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This paper considers problems which accompany thermionic emission of electrons from a hot body 
surrounded by a plasma. In the absence of other mechanisms, an electric potential is established at the 
snrface nf the hndy thrmigh the halance of thermionic emission and accretion of electrons from the external 
plasma. Analytical solutions are obtained for the electric potential field and the electron density distribution 
around the body. A possible application of this analysis to objects in space is indicated. &ts%d- 

1. Introduction 
An object in space may become hot while approaching 

a hot stellar body like the sun, or while entering a dense 
atmosphere like that of the earth. Long before such 
metallic objects melt, evaporate, or ablate, they may 
acquire temperatures which are su6cient to cause a 
copious emission of electrons from the surface. There- 
fore, the temperatures lower than, and in the neighbor- 
hood of, the melting point are of interest to us in this 
paper. As a matter of convenience and without serious 
loss of generality, we will regard iron as a reference 
substance composing the objects in space, and hence 
consider temperatures lower than 1600K. The analytical 
formulae are, however, applicable to any other specific 
case of a surface capable of thermionic emission. 

Thermionic emission is very sensitive to temperature; 
the emitted electron flux is of the order of 10'2 and lo1* 
electrons cm-2 sec-l a t  surface temperatures of 1OOOK 
and 1600K, respectively, from a material of work func- 
tion W0=3 ev. The emission of electrons from the 
object's surface leaves a positive surface charge. A great 
majority of the emitted electrons describe ballistic 
orbits and return to the surface, while a certain number 
of those in the high energy tail of the energy spectrum 
are able to escape from the potential field of the object. 
The positive charge at  the object's surface is established 
by these escaping electrons, and the rate of escape of the 
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emitted electrons decreases with an increase in the 
surface potential. Furthermore, if the object is sur- 
rounded by a plasma, the plasma accretion alone has a 
tendency to impart a negative charge to the object's 
surface. Therefore, a steady potential can be established 
at the object's surface when the net negative charge 
leaving the object due to thermionic emission is com- 
pletely replenished by the net negative charge brought 
to the surface by the accretion from the surrounding 
plasma. The magnitude of the equilibrium surface po- 
tential is then determined from the balance of the 
plasma accretion current and the escape component of 
the thermionic emission current. 

There are other mechanisms (Chopra, 1961) by which 
an object may acquire an electric charge. An effect of 
considerable interest is connected with the photoelectric 
emission and accretion of electrons. The photoelectric 
effect is important for objects on the day side of the 
earth and for surfaces exposed to the sun. In  certain 
cases, it is comparable to, and a t  times may even become 
more significant than, the thermionic emission. We will, 
however, limit the analysis of the present paper to only 
thermionic emission and leave these other considera- 
tions for a subsequent paper. 

The incoming plasma electron flux and the thermionic 
electrons constitute a plasma cloud with most of the 
contribution to the electron density in the cloud coming 
from the ballistic component of the emitted electrons. 
This plasma cloud screens the electric potential on the 
body. An analytical expression for the density distribu- 
tion in terms of potential cpo and work function WO is 
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obtained by solving the equations of Poisson and the 
conservation of energy and momentum. This analytical 
expression is substituted back in the Poisson equation 
which is then solved numerically to yield potential 
distribution as a function of distance from the surface. 

It may be mentioned here that the problem con- 
sidered in this paper bears a certain analogy to the 
problem of the exosphere. In the exosphere problem, the 
particles are projected outwards at  a rate determined by 
the temperature of the base layer. One of us (Shen, 1963) 
has successfully applied the present analysis (after some 
modifications) to the structure of the planetary exo- 
sphere, and has obtained an analytical expression for 
the density distribution. 

2. Formulation of the problem-basic equations 

Let us consider a spherical object with an equilibrium 
surface potential PO and surface temperature T,  sur- 
rounded by screening charges from thermionic emission 
and a rarefied external plasma with charge density ne 
and temperature T,. When the thermionic emission is 
stronger than the plasma accretion and the object is 
moving slower than the mean thermal speed of the 
plasma electrons ( - lo7  cm sec-I) the potential p(r) 
and the screening electron density p ( r )  are, to a first 
degree of approximation, spherically symmetrical, and 
are given by 

e 
V2&) = - -p(r) ( 1 )  

EO 

where e=4.8X10-1°, e.s.u. is the electron charge, E O =  1 
is the permittivity of the medium, and I is the radial 
distance measured from the center of the spherical body. 

The screening electron density p(r)  consists of three 
parts 

P(r> = P b ( r ) + p e s c ( r ) + P p ( r ) .  (2) 

Here P b ( r )  is the ballistic component consisting of the 
electrons emitted from the surface with velocities less 
than the escape velocity; these particles describe bal- 
listic orbits in the electric potential field of the body and 
return to the surface. The escape component peac(r)  
arises from electrons emitted with velocities exceeding 
the escape velocity; these particles do not return to the 
charged body. The third component pp(r) represents the 
accretion from the surrounding plasma. Among these 
P b ( r )  contributes about 90 per cent to the local electron 
density (as can be seen from later calculations). Also, 
in the steady state condition, the escape component of 
the thermionic electron flux is equal to the incoming 
plasma accretion flux. Therefore, to simplify one of our 
later calculations, we can set pesc(r)  = pp(r).  

Assuming that the electrons inside the metallic body 
have velocities given by the Fermi distribution law, the 
number of electrons having velocities in the range 
(v, v+dv) and hitting a unit area of the surface (inside) 
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is given by 
4~m3v,vtdv,dvt I 

(3) i J ( V ) = -  
h3e(E-E/)lkT+{ 

where 
E = 3m(v,z+vtz) 

and m=9X10-28g is the electron mass. h=6.27X10-27 
erg sec-l is Planck’s constant, E f  is the Fermi energy, 
and v, and vt are the components of the velocity v in 
directions parallel and transverse to the radius vector r. 

If we denote the velocity of the electron at the posi- 
tion r(r> R), by ~ ( r ) ,  then the principles of conservation 
of energy and angular momentum require that 

(4) 

1/2m(ur2+ut2) - e&) 
= 1/2m(v,2+vt2) - Wo- E,- ecpo(r) ( 5 )  

where R is the radius of the body. 
Equations (4)  and (5) yield 

2 
ur2=vT2+ 1 - -  vt2--{e(po-p)+Ef+Wo} (6) 

which provides a stringent condition for an electron 
emitted from the surface to reach the radial distance r .  
Only those electrons with initial velocity v satisfying 
the inequality 

( :) m 

2 
vr2+ 1 - -  v t2--{e(po-  p)+Ej+W0)20 ( 7 )  ( 3 m 

can reach position r. These electrons may be divided 
into two categories: 

1 )  Ballistic component: These electrons satisfy ( 7 )  and 
have velocities less than the velocity of escape such that 

+mv2- WO- E, < e cpo (8) 

and hence describe ballistic orbits. 
2 )  Escape component: These electrons satisfy ( 7 )  and 

have velocities equal to or exceeding the velocity of 
escape such that 

$mvz- Wo-E,>epo, (9) 

and describe escape trajectories. 
These classifications are important in the evaluation 

of electron density and may be illustrated diagram- 
matically as in Fig. 1. Curves I, I1 and I11 describe 
equations 
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and 

vr2= ( ; ) cEf+wol>  (12)  

where a =  R/r. These curves represent a circle, an ellipse 
and a straight line in the same order and distribute the 
thermionic electrons in various velocity domains. 

The electrons with velocity domains external to the 
circle and the straight lime-region A - a r e  the escape 
electrons which do not return to the body. The electrons 
with velocities in the domain enclosed by the circle 
and the ellipse-region B-belong to the ballistic group 
with more than the necessary radial component of the 
velocity to reach the position r. These electrons are 
counted twice in calculating the electron density dis- 
tribution and make a dominant contribution to the 
local electron population. The electrons corresponding 
to region C-enclosed by the ellipse and the straight 
line-also belong to the ballistic group but do not 
possess enough radial velocity to reach position I. 

Therefore, these particles do not contribute to the local 
electron density. The straight line represents the least 
value of the radial velocity that an electron must acquire 
before it can surmount the surface barrier. Therefore, 
the electrons corresponding to region D in Fig. 1 are not 
able to get out of the surface of the metallic body. 

3. Electron density as a function of potential 
The contribution of the thermionic electrons with the 

initial (just inside the surface) velocities in the range 
(v, v+dv) to the electron population in a shell of radii Y 

and r+dr is determined by the product of the corre- 
sponding electron flux J(v)dv and the time dt=dr/u, 
spent by, these electrons in traversing the thickness dr 
of the shell. This contribution dpth(Y)  is given by 

J (  v)dv 
dpth(r) =a2[r,o -. (13)  

Ur 

With the help of (3) and (6),  this yields the expression 
for the thermionic component Pth(i) of the electron 
density a t  position Y, 

The limits of the integrals I1 and I2 are set in accordance 
with (10)-(12) and Fig. 1, and the weight factors are 
inserted as explained in the preceding section. Including 
the contribution of the external plasma, the total elec- 
tron density p(r) a t  the position Y becomes 

P(r) = Pth(r)+Pp(r) = 8*(m/h)3a2(11+ I d .  ( 1 7 )  

On introducing the following dimensionless parameters 

XZ=mvrz/2kT; Y2=mvt2/2kT; E= E,/kT (18) 

and 
a= [Ef+Wo+e(cpo- ( ~ ) l / k T ,  

equation (17 )  reduces to 

8r(2mkT)far2 

h3 
p(r> = 

XYdXdY XI/ [x2+ ( 1  -a'> Y2- a]+[ex+tYLt+ 1 1  

X X 2 +  ( 1  -az )  Y2--a> 0. (19) 

The inequality 

X2+ Y2-  €>a-  €2 Wo/kTX>l 

enables us to neglect the unity term in comparison with 
the exponential term in the denominatoilof the inte- 
grand in (19). Furthermore, if we define 

X2+(1-a2)Y2- e- (Wo/kT) =Z2 (20) 

(21 )  
and 

(1 - a2) *( Y / X )  = tad, 

the expression for the total electron density p(r) reduces, 
after some simplification, to 

p ( y )  = 2 (2rmk T/h2) fe-1 W H e  ((P(~(P) ]/.ET 

X [ 1 - {  l-(R/y)2}te-Rae(coo--r)/.ET(r'R')] I ( 2 2 )  

in which p is expressed as a function of the potential 
44 = cp. 

where 
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4. Reduced Poisson equation 

Substituting for the electon density p ( r )  from ( 2 2 )  in 
the Poisson equation ( 1 )  and introducing the dimension- 
less quantities 

$= ep/kT 

e= Wo/kT. 
and (23) 

we obtain 

x [I - { 1 - (R/r)2} ~ ~ - ( J . o + ) R * / ( ~ " R ~ ) ]  ( 24 )  

where 
A = - 2(eZ/eo)(2nm/h2)fe4. (25 )  

The boundary conditions of the problem are 

$02) =$0 (26) 

$(m)=O ( 2 7 )  
a t  r= R, and 

a t r = m .  
In some cases of interest to us, we will find that the 

equilibrium potential energy, epo, is much greater than 
the thermal energy kT corresponding to the surface 
temperature T .  This would then enable us to neglect, 
to a first approximation, the second term in (24 ) .  We 
then have 

with 
V $ ( r )  = Be-X, (28 )  

B=A(kT)h, and X=+o-+. (29) 

Equation ( 2 7 )  is identical with the so-called isothermal 
equation which has been solved for various boundary 
conditions and applied extensively to problems pertain- 
ing to stellar structure by Chandrasekhar (1939). 

5. Determination of surface potential 

The equilibrium value of the surface potential is 
determined from the balance of the escape component 
of the thermionic emission current and the plasma accre- 
tion current. The plasma accretion current consists of 
the electron and ion components. In the absence of a 
surface potential cpo, the ion accretion current is smaller 
than the electron accretion current by a factor of the 
order of (me/wzj)h. Therefore, only the relative initial 
magnitudes of the thermionic escape current and the 
plasma electron accretion current need be considered, 
and the ion accretion current may be neglected. The 
surface potential cpo is then positive, if the initial thermi- 
onic escape current is greater than the initial electron 
accretion current. It may, however, become necessary 
to include ion accretion in consideration of the magni- 
tude of the surface potential PO, if the latter is negative. 

Let us first consider the case of a positive surface 
potential. The thermionic escape current is given by 

(Region 4 )  

As mentioned in Section 11, the electrons in region A 
of Fig. 1 must have radial and transverse velocity 
components such that 

vr2> (2 /m)(Ef+W0)  
and 

vr2+vt2 > (2/m) (E,+ WO+ ecpo). 

The expression for the thermionic escape component 
may therefore be rewritten as 

where the special limits of integration are 

Once again we can neglect the unity terms in com- 
parison with the exponential terms in the denominators 
of the integrands in (31 ) .  After carrying out the inte- 
gration and making some simplifications, ( 3 1 )  reduces to 

Jest= (4rRkT) '(m/h3) (1 +$)e-(#o+B). (32) 

FIG. 1. Curves I, I1 and I11 are the plots of D~ and 0 1  in accord- 
ance with the equations (lo), (11) and (12), respectively, and de- 
fine the velocity domains of the thermionic electrons. Electrons 
in domain A form the escape-group, those in domains B and C 
describe ballistic orbits with sufficient and insufficient energies 
respectively to reach position I, and those in domain D do not 
have enough energy to get out of the surface of the object. 
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For bodies moving slower than the mean thermal 
speed of the plasma electrons, the electron accretion is 
symmetrical about the body, and is given by 

21r 

3 
J, = -T,n,vJ& (TI T P )  $0, (33) 

when ne and v,  are the number density and the mean 
thermal speed of the plasma electrons, and qe is the 
sticking coefficient defined as the fraction of the incident 
electrons transferring their charge to the body. In esti- 
mating the plasma accretion current J, we further note 
that the ion accretion is further reduced by a factor 
e-(T/Tp)J.o and becomes negligibly small in comparison 
to the electron accretion. Hence, 

2 r  

3 
J p- N J e- --qeng,R2e(T/TP)S0, (34) 

which, when combined with (32) in the condition of 
equilibrium, 

Je,c= J p ,  (35) 
yields 

= 6X , (36) 
e[l+T/TP] J.0 24lrm,(kT) 2e4 Tze+ 

1++0 ~eneveh’ W e V e  

- - 

where T is expressed in electron volts. 
If, on the other hand, the surface potential ,,PO is 

negative, the ion accretion current is enhanced by a 
factor of e l ( T I T p ) J . o l .  With larger than a few tenths 
of an electron volt, the enhancement factor eI*.ol may 
be large enough to counteract the effect of the reduction 
factor (me/m;)! so that the ion current may by no 
means be negligible. In these circumstances, we must 
include the term 

J; = (2lr/3) q;Z,np;R2e-(TITp)*o (37) 

in calculation of J,. In writing (37) we have assumed 
that the ion accretion is also symmetrical about the 
body. If, however, the speed of the body exceeds the 
mean thermal speed of the plasma ions by an order of 
magnitude, the ion accretion current (37) is reduced by 
a factor of 4. The corresponding electron accretion 
current is given by 

J,= ( 2lr/3)q,n,~,R~e(~~~~)*O. (38) 

Therefore, the expression for the plasma accretion 
current reduces to 

In the calculation of the thermionic escape current 
we may first remark that the negative surface potential 
in our problem is only a fraction of a volt. It may also 

be noted that a negative surface potential, however 
small, enables all the emitted electrons to escape. Hence, 
the thermionic escape current is approximately given by 

J,,, = (4lrRk T )  2(m/h3)e4. (40) 
Finally, in the condition of equilibrium (35) equations 

(39) and (40) yield 

q&(T/Tp)So-  qi(me/mi)te-(T/Tp)$O 
= 241r(m,/h8nev,)(KT)2e4=6X 1029(Tz/n,v,)e4. (41) 

6. Discussion 

In the preceding sections, we have formulated and 
analyzed the problem of the screening of the electric 
potential on a hot spherical object surrounded by an 
external plasma. It is assumed that 1 )  the spherical 
body acquires the electric potential in the processes of 
thermionic emission of electrons from the surface of the 
object and accretion of the charged particles from the 
surrounding plasma, and 2) the surface potential and 
the disL&utinn nf the ptent ia l  and the electron density 
in the screening cloud are spherically symmetrical about 
the object. The basic requirement to satisfy these as- 
sumptions are that i) the surface of the spherical object 
is a t  a uniform temperature and ii) the object is either 
at rest or it moves with a speed that is small compared 
to the mean thermal sped  of the plasma electrons. 
These requirements set restrictions on the exact applica- 
tion of the results of the present analysis to actual 
objects in space. The present analysis, nevertheless, 
provides, even in such cases where the above-mentioned 
assumptions do not strictly hold, a t  least an order of 
magnitude estimate of this phenomenon in front of the 
hottest part of the object. 

The applications of our analysis may be found in 
objects entering a planetary atmosphere or those ap- 
proaching sufficiently close to a hot star. A space vehicle 
entering the earth’s atmosphere encounters stagnation 
temperatures of the order of 1500K. All meteoric objects 
acquire surface temperatures above 1200K. Ionization 
in front of cometary heads and certain cometary tails 
(which is not understood as well) may be attributed in 
part to the solar heating of the metallic content of these 
objects. In  general, the surface temperatures of the 
above-mentioned classes of objects are not uniform. 
Because of the variety of types of such objects and un- 
certain available data, we will not make any attempt to 
apply our analysis to any specific example of such a 
space object. Instead, we will illustrate our theory by 
considering a hypothetical spherical object heated to a 
uniform surface temperature and surrounded by a 
plasma of electron density n,-103 cm-3 a t  the equi- 
librium plasma temperature TP-  lOOOR (0.09 ev). Two 
values of the work function and five values of the surface 
temperature, viz., 

W0=3.0 and 3.8 (electron volts) 
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and 

T=0.04, 0.06, 0.09, 0.13 and 0.15 (electron volts) 

are considered to illustrate the influence of these param- 
eters on the nature of the electron cloud around a hot 
object. A common value of q,=qi=O.l is adopted for 
the sticking coefficients. Since these surface-plasma 
parameters appear in a logarithmic term, any departure 
from this value for the sticking coefficients is not likely 
to affect our result seriously. 

The equilibrium value of the surface potential ~0 is 
determined by the surface temperature T ,  the electron 
density ne, and temperature T ,  of the surrounding 
plasma. At low values of T ,  thermionic emission of 
electrons is small, and hence, the balance of the electron 
and ion accretion currents from the surrounding plasma 
establishes a negative potential cpo on the objects’ sur- 
face. The numerical value of cpo is always a fraction 
(50.05) of a volt because even this small value of cpo is 
large enough to increase substantially the ion accretion 
current and reduce the electron accretion current to 
off-set the relative effect of the factor (me/m;)*. At 
high values of T ,  on the other hand, a positive surface 
potential of several volts is established by the balance 
of the thermionic-emission and the electron-accretion 
currents; the ion-accretion current having been reduced 
to a negligible value by the joint action of the positive 
potential and the factor (m,/m;)*. Table 1 lists values 
of cpo corresponding to the several values of Wo and T .  

TABLE 1. Surface potential of a metallic body. 
[W0=3.8 ev; T,=0.09 ev (1044K); n.=lW/cm-a; q=0.1] 

T ( 4  PO (volt) 
0.04 -0.1691 
0.06 - 0.1688 
0.09 +0.0963 
0.11 +0.4895 
0.13 +0.8430 
0.15 + 1.1340 

Equation (24)can be reduced to a dimensionless differ- 
ential equation, 

X[~-(~-X-~)~]~,-(J.O-~)I(XLI) (42) 

where X = r / R .  The variation of potential with distance 
from the spherical hot body of 1-cm radius is calculated 
by solving (42), and the results are illustrated in Figs. 2 
and 3. In  Fig. 2, two curves represent the inclusion 
and the exclusion of the second term inside the paren- 
thesis of (42) for the set of parameters T=0.09 ev, 
W0=3 ev and $0=5.43. In  Fig. 3, the profiles of the 
potential distribution were drawn for the two sets of 
parameters: 

i) T=0.13 ev; wo=3.8 ev; and #0=6.5, 

and 

ii) T=0.11 ev; W0=3.8 ev; and +0=4.0, 

respectively. The variation of potential with distance 
has the following characteristics: 

1) The nature of the profile of the potential distribu- 
tion curve is independent of the set of the parameters 
used. The potential falls very rapidly with distance from 
the object, and reduces to Q of its surface value a t  a 
distance of approximately 2.3 and 1.7 cm in Figs. 2 and 
3, respectively. At a distance of about 8-10 cm the 
potential acquires an almost zero value and the surface 
potential of the body is completely shielded by an 
electron cloud of this dimension. 

2 )  Neglect of the second term inside the parenthesis 
of (42) does not seem to matter in the calculation of the 

I -  

I 2 I 3 4 5 6 7 8 9 IO 0 

FIG. 2. Plots of $(I) against r / R .  (WOES ev; T=O.o9 ev; and 
$0 = 5.43.) Solid line : 
A%,b = A  (kT)l’z[l- (1- (R/r)2)1/2 

Dotted line: A%,b=A(kT)1/2 exp($-$o). 
X exp ($-$o)F/ (rz- P) 1 exp ($ -$d. 

7 I 
I 1 

FIG. 3. Solid line: W0=3.8 ev; T=0.13 ev; J.0=6.50. 
Dotted line: W ~ = 3 . 8  ev; T=0.11 ev; $0=4.45. 
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FIG. 4. (wo=3 ev; T--0.09 ev; and $o=5.43.) Plots of log, p(r) 

P = A D  - { 1 - W)*P exp($-$o)iP/(+-Il exp($-$o). 

against r/R. Solid line: 

Dotted line: p = A  exp($-$o). 

potential distribution. Apparently the very rapid de- 
crease of potential with distance from the object reduces 
this term to a second order of exponential in $+o, 
thereby making it negligible in comparison to the 
first term. 

The electron density in the electron cloud surrounding 
the body is calculated from (22) by substituting in it the 
values of the potential distribution obtained from the 
solution of (42). The results of this computation are 
given in Figs. 4 and 5. Fig. 4, like Fig. 2, includes two 
curves; one of these corresponds to the inclusion of the 
second term inside the parentheses of (22) while the 
other disregards this term. The set of parameters used 
in the computation of these curves have the value 
T=O.W ev; W0=3 ev; &=5.43. The density distribu- 
tion curve in Fig. 5, as in Fig. 3, corresponds to the sets 
of parameters having values 

i) T=O.W ev; Wo=3 ev; &=5.43 
and 

ii) T=0.13 ev; W0=0.38 ev; 1L0=6.5 

and the numerical calculations are based on the inclu- 
sion of the second term in (22). These curves bring out 
the following features of the variation of the electron 
density with distance from the object: 

r (cm) - 
FIG. 5. Solid line: W0=3.8 ev; T=0.13 ev; and $0=6.5O. 

Dotted line: wo=3 ev; T=0.09 ev; and&,=5.43. 

1) There is a considerable increase of electron density 
in the immediate vicinity of the body. 

2) The electron density decreases very rapidly with 
distance from the body. 

3) The inclusion or exclusion of the second term 
within the parentheses of (22) in the computations of 
the electron density appears to make a substantial 
difference in these estimates, whereas it was not im- 
portant for the potential distribution (see Fig. 4). The 
neglect of this term yields a value for the electron 
density a t  great distances which is higher than the 
ambient value. Therefore, it is necessary to consider this 
term in order to arrive a t  the correct estimates of the 
electron density. 
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